The number of convergent graphs under the biclique operator with no twin vertices is finite

نویسندگان

  • Marina Groshaus
  • Leandro Pedro Montero
چکیده

The biclique graph of G, KB(G), is the intersection graph of the bicliques of G. Given a graph G, the iterated biclique graph of G, KBk(G), is the graph defined iteratively as follows: KBk+1(G) = KB(KBk(G)). Say that a graph G diverges (resp. converges) under the operator KB whenever limk→∞ |V (KBk(G))| = ∞ (resp. limk→∞KB(G) = KBm(G) for some m). Each of these behaviours were recently characterized. These characterizations lead to a O(n4) time algorithm for deciding the divergence or convergence of a graph. In this work we prove that any graph with at least 7 bicliques diverges under the biclique operator. Furthermore, we prove that graphs with no twin vertices that are not divergent have at most 12 vertices, which leads to a linear time algorithm to decide if a graph converges or diverges under the biclique operator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost every graph is divergent under the biclique operator

A biclique of a graph G is a maximal induced complete bipartite subgraph of G. The biclique graph of G denoted by KB(G), is the intersection graph of all the bicliques of G. The biclique graph can be thought as an operator between the class of all graphs. The iterated biclique graph of G denoted by KBk(G), is the graph obtained by applying the biclique operator k successive times to G. The asso...

متن کامل

Graphs and colors : edge-colored graphs, edge-colorings and proper connections. (Graphes et couleurs : graphes arêtes-coloriés, coloration d'arêtes et connexité propre)

In this thesis, we study different problems in edge-colored graphs and edge-colored multigraphs, such as proper connection, strong edge colorings, and proper hamiltonian paths and cycles. Finally, we improve the known O(n) algorithm to decide the behavior of a graph under the biclique operator, by studying bicliques in graphs without false-twin vertices. In particular, • We first study the k-pr...

متن کامل

THE AUTOMORPHISM GROUP OF FINITE GRAPHS

Let G = (V,E) be a simple graph with exactly n vertices and m edges. The aim of this paper is a new method for investigating nontriviality of the automorphism group of graphs. To do this, we prove that if |E| >=[(n - 1)2/2] then |Aut(G)|>1 and |Aut(G)| is even number.

متن کامل

Twin minus domination in directed graphs

Let $D=(V,A)$ be a finite simple directed graph. A function$f:Vlongrightarrow {-1,0,1}$ is called a twin minus dominatingfunction (TMDF) if $f(N^-[v])ge 1$ and $f(N^+[v])ge 1$ for eachvertex $vin V$. The twin minus domination number of $D$ is$gamma_{-}^*(D)=min{w(f)mid f mbox{ is a TMDF of } D}$. Inthis paper, we initiate the study of twin minus domination numbersin digraphs and present some lo...

متن کامل

Total double Roman domination in graphs

Let $G$ be a simple graph with vertex set $V$. A double Roman dominating function (DRDF) on $G$ is a function $f:Vrightarrow{0,1,2,3}$ satisfying that if $f(v)=0$, then the vertex $v$ must be adjacent to at least two vertices assigned $2$ or one vertex assigned $3$ under $f$, whereas if $f(v)=1$, then the vertex $v$ must be adjacent to at least one vertex assigned $2$ or $3$. The weight of a DR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2009